首页> 外文OA文献 >From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis
【2h】

From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis

机译:从模型,信号到知识:故障检测和诊断的数据驱动视角

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This review paper is to give a full picture of fault detection and diagnosis (FDD) in complex systems from the perspective of data processing. As a matter of fact, an FDD system is a data-processing system on the basis of information redundancy, in which the data and human's understanding of the data are two fundamental elements. Human's understanding may be an explicit input-output model representing the relationship among the system's variables. It may also be represented as knowledge implicitly (e.g., the connection weights of a neural network). Therefore, FDD is done through some kind of modeling, signal processing, and intelligence computation. In this paper, a variety of FDD techniques are reviewed within the unified data-processing framework to give a full picture of FDD and achieve a new level of understanding. According to the types of data and how the data are processed, the FDD methods are classified into three categories: model-based online data-driven methods, signal-based methods, and knowledge-based history data-driven methods. An outlook to the possible evolution of FDD in industrial automation, including the hybrid FDD and the emerging networked FDD, are also presented to reveal the future development direction in this field.
机译:本文将从数据处理的角度全面介绍复杂系统中的故障检测与诊断(FDD)。实际上,FDD系统是基于信息冗余的数据处理系统,其中数据和人们对数据的理解是两个基本要素。人们的理解可能是代表系统变量之间关系的显式输入输出模型。它也可以隐式地表示为知识(例如,神经网络的连接权重)。因此,FDD是通过某种建模,信号处理和智能计算来完成的。在本文中,在统一的数据处理框架内对各种FDD技术进行了回顾,以全面了解FDD并达到新的理解水平。根据数据类型和数据处理方式,FDD方法分为三类:基于模型的在线数据驱动方法,基于信号的方法和基于知识的历史数据驱动方法。展望了FDD在工业自动化中的可能发展,包括混合FDD和新兴的网络FDD,以揭示该领域的未来发展方向。

著录项

  • 作者

    Dai, Xuewu; Gao, Zhiwei;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号